
mmSign: mmWave-based Few-Shot Online Handwriten Signature
Verification
MINGDA HAN, Shandong Normal University, China and City University of Hong Kong Shenzhen Research
Institute, China
HUANQI YANG, TAO NI, DI DUAN, MENGZHE RUAN, and YONGLIANG CHEN, City Univer-
sity of Hong Kong, China and City University of Hong Kong Shenzhen Research Institute, China
JIA ZHANG∗, Shandong Normal University, China
WEITAO XU∗, City University of Hong Kong, China and City University of Hong Kong Shenzhen Research
Institute, China
Handwriten signature veriication has become one of the most important document authentication methods that are widely
used in the inancial, legal, and administrative sectors. Compared to oline methods based on static signature images, online
handwriten signature veriication methods are more reliable because of the temporary dynamic information (e.g., signing
velocity, writing force, stroke order) that alleviates the risk of being forged. However, most existing online handwriten
signature veriication solutions are reliant on speciic signing devices (e.g., customized pens or writing pads) and require
extensive data collection during the registration phase, resulting in poor adaptability and applicability for new users. In this
paper, we propose mmSign, a millimeter wave (mmWave)-based online handwriten signature veriication system, which
enables accurate sensing of the user’s hand movements when signing through the superior sensing capability of mmWave.
mmSign extracts the time-velocity feature maps from the captured mmWave signals by the carefully designed signal pro-
cessing algorithms, and then exploits a transformer-based veriication model for signature veriication. In addition, a novel
meta-learning strategy with proposed task generation and data augmentation methods is introduced in mmSign to teach
the veriication model to learn efectively with limited samples, allowing our model to quickly adapt to new users. Exten-
sive experiments show that mmSign is a robust, eicient, and secure handwriten signature veriication system, achieving
84.07%, 87.31%, 91.12%, and 96.54% veriication accuracy when 1, 3, 5, and 10 labeled signatures are available, respectively,
while being resistant to common forgery atacks.

CCS Concepts: •Human-centered computing→ Ubiquitous and mobile computing; • Security and privacy→ Bio-
metrics.

Additional Key Words and Phrases: Signature veriication, mmWave sensing, Meta-learning

∗Corresponding authors

Authors’ addresses: Mingda Han, mingdhan@cityu.edu.hk, Shandong Normal University, Jinan, China and City University of Hong
Kong Shenzhen Research Institute, Shenzhen, China; Huanqi Yang, huanqi.yang@my.cityu.edu.hk; Tao Ni, taoni2-c@my.cityu.edu.hk;
Di Duan, dduan5-c@my.cityu.edu.hk; Mengzhe Ruan, cs.mzr@my.cityu.edu.hk; Yongliang Chen, cs.ylchen@my.cityu.edu.hk, City Uni-
versity of Hong Kong, Hong Kong, China and City University of Hong Kong Shenzhen Research Institute, Shenzhen, China; Jia Zhang,
zhangjia@sdnu.edu.cn, Shandong Normal University, Jinan, China; Weitao Xu, weitaoxu@cityu.edu.hk, City University of Hong Kong,
Hong Kong, China and City University of Hong Kong Shenzhen Research Institute, Shenzhen, China.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that
copies are not made or distributed for proit or commercial advantage and that copies bear this notice and the full citation on the irst page.
Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permited. To copy
otherwise, or republish, to post on servers or to redistribute to lists, requires prior speciic permission and/or a fee. Request permissions
from permissions@acm.org.
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
1550-4859/2023/6-ART $15.00
https://doi.org/10.1145/3605945

ACM Trans. Sensor Netw.

https://doi.org/10.1145/3605945
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3605945&domain=pdf&date_stamp=2023-06-24


2 • Han et al.

1 INTRODUCTION
Biometric-based authentication has gained popularity as a more convenient and reliable way to achieve secure
authentication, which utilizes people’s unique biological characteristics (e.g., ingerprints [72], irises [45], and
behavioral habits [64]) for authentication. Among them, handwriten signature veriication has beenwidely used
as one of the main veriication methods for paper documents in the ields of inance, law, administration, etc.
Despite its widespread application, signature veriication is vulnerable to forgery atacks [8, 32], which results
in enormous damage. In the inancial sector, for example, signature forgery of paper checks accounts for 66% of
inancial fraud activity in 2022 [32]. Moreover, signature forgery also happens in other ields [8, 47, 54], indicating
the signiicance of handwriten signature veriication research.

Depending on the signature acquisition approach, existing signature veriication methods can be divided into
two categories, namely, oline signature veriication methods [15, 25, 49] and online signature veriication meth-
ods [9, 38, 40]. he oline signature veriication methods use the user’s static signature features (i.e., 2D image
features) for veriication [24]. Since the oline methods consider only the inal static signature features and ig-
nore the dynamic features during the signature execution process, they are vulnerable to being forged. While
the online signature veriication methods utilize the user’s dynamic features (e.g., signing velocity, writing force,
stroke order) during the signature execution process for veriication [31]. Compared to oline methods, online
methods can obtain additional dynamic signing information, which makes them more reliable.

Owing to its reliability, a variety of online signature veriication schemes have been proposed. According to
diferent signature acquisition methods, the existing online signature veriication schemes can be divided into
four categories, which are digital signature device-based [50], wearable device-based [40], camera-based [79],
and wireless sensing-based [82] signature veriication methods. While these schemes employ diferent signa-
ture acquisition methods, they essentially leverage the same idea that diferent people show distinct dynamic
characteristics due to diferent signing habits even when signing the same name. We summarize some existing
online handwriten signature veriication schemes in Tab. 1 and ind the following limitations.

1) Low generalizability. Users may sign on diferent surfaces (e.g., paper documents, tablets) or with dif-
ferent pens (e.g., signature pens, digital pens). he digital signature device-based online handwriten signature
veriication systems [38, 40, 50] can only sign on/with speciied digital devices (e.g., digital tablets or pens) and
cannot verify signatures on paper documents. In addition, existing acoustic-based schemes [9, 17, 82] are sen-
sitive to the relative position of the user’s signature box to the acoustic sensor, which results in rapid system
performance degradation when the position of the user’s signature changes. 2) Low data eiciency. Most of
the existing online handwriten signature veriication systems oten require a large number of genuine signa-
tures from new users to achieve good veriication performance [16, 31, 50]. Although a large amount of data can
improve system performance, extensive data collection is time-consuming and labor-intensive, which is not in
line with the practical application scenario. 3) Less privacy protection. Camera-based solutions [79] always
shoot the user’s hand at a very close distance during the signing process, which may cause leakage of the user’s
private information such as ingerprints [48, 71]. As such, a promising handwriten authentication system needs
to focus only on the signature without capturing extra sensitive information from the document. 4) Low user
experience.Wearable device-based online signature veriication systems require the user to wear a speciic de-
vice (e.g., smartwatch [40, 51], data glove [37]) while signing the document, which is not convenient in practice
and degrades the user experience.

he aforementioned limitations motivate us to design an online signature veriication system that would
meet the requirements of high generalizability, adequate privacy protection, high data eiciency, and good user
experience. In this paper, we propose mmSign, which leverages the superb sensing capabilities of millimeter
wave (mmWave) to achieve a non-intrusive online handwriten signature veriication with only a few samples.
Tab. 1 illustrates the properties of mmSign while comparing with other existing schemes. he basic idea is to
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Table 1. Comparison of online handwriten signature verification methods.

Scheme Signature
Acquisition Method Generalizability Privacy

Protection
Data

Eiciency
User

Experience

[38, 43, 50] Digital Tablets or Pens ✗ ✓ ✗ ✓

[37, 40, 51] Wearable Devices ✓ ✓ ✗ ✗

[79] Camera ✓ ✗ ✗ ✓

[9, 17, 82] Acoustic ✗ ✓ ✓ ✓

mmSign mmWave ✓ ✓ ✓ ✓

use mmWave to sense hand movements during the user’s signature execution process. Due to the diferent hand
sizes and signature habits, such as the signing velocity and stroke order of each individual, the features obtained
by mmWave radar are diferent even when signing the same name. Although the idea is straightforward, we
need to address several non-trivial challenges.
• Challenge 1:he raw frequency modulated continuous wave (FMCW) signal obtained from the mmWave
radar contains a lot of noises from surrounding objects and the user’s body. herefore, how to eliminate
static and dynamic noises and obtain time-velocity featuremaps relecting the user’s signature information
is the irst challenge.
• Challenge 2: Ater geting the time-velocity feature maps, we need to use them to verify the genuineness
of the signature. However, even the same user has slight diferences during diferent signature execu-
tion processes, which results in diferences in the generated feature maps. herefore, how to design a
veriication model to extract high-level features that are robust to changes in the feature maps but still
user-speciic is another challenge.
• Challenge 3: Most existing signature veriication systems require large amounts of training data to
achieve good performance. he massive signature collection for each newly registered user is impracti-
cal, and it reduces the user experience. herefore, how to achieve a good veriication performance with
limited data when new users register is the third challenge.

We propose a series of approaches to tackle the above challenges in mmSign. Firstly, we design several novel
signal processing methods to eliminate various noises and accurately locate hand movements for extracting
time-velocity features during the signature execution process. hen, a transformer-based veriication model is
designed to encode the input feature maps into a high-level vector, and verify the genuineness of the signature.
Meanwhile, in order to improve the generalization ability and robustness of the designed veriication model, we
design three data augmentation schemes based on the variation characteristics of the mmWave signal during
the signature execution process. Finally, with the help of a designed task generation strategy, a meta-learning
framework is introduced in mmSign to quickly adapt to newly registered users using only a few samples.

Our contributions in this paper are summarized as follows:
• We propose mmSign, the irst mmWave-based non-invasive online handwriten signature veriication sys-
tem, which is applicable to any writing surface without any privacy leakage and is data eicient and
user-friendly.
• We propose a series of signal processing methods to obtain the informative hand-signing features from
the raw FMCW signals. Speciically, a sub-signal generation algorithm and a feature extraction method
are designed to accurately localize the hand movements and obtain the time-velocity feature maps, respec-
tively.
• We design a novel transformer-based veriication model to verify the authenticity of the signature. To-
gether with the proposed three data augmentation methods based on the variation characteristics of
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mmWave signals during the signature execution process, mmSign achieves favorable veriication perfor-
mance.
• We formulate the handwriten signature veriication task as a meta-learning problem and design a meta-
learning framework to ensure that new users can quickly adapt to our system with only a few samples. In
addition, a task generation strategy is proposed to enhance the performance of meta-learning.
• We conduct a comprehensive evaluation of mmSign in multiple real-world environments using various
signature pens and writing surfaces. Evaluation results demonstrate mmSign’s good adaptability to new
users. Security analysis is also conducted to show that mmSign is resistant to common forgery atacks.

he rest of this paper is organized as follows. We briely review the related works in Sec. 2. We present the
design details of mmSign in Sec. 3. We evaluate the performance of mmSign through extensive experiments
in Sec. 4. hen, we present the results of the user study in Sec. 5. Finally, in Sec. 6 and Sec. 7, we discuss the
remaining problems and conclude this paper, respectively.

2 RELATED WORK
In this section, we briely review the related works on handwriten signature veriication, mmWave sensing, and
few-shot learning in wireless sensing.

2.1 Signature Verification
Ofline signature veriication systems. he oline signature veriication system registers the user’s static
signature into the system through an oline signature acquisition device (e.g., scanner, camera). When the user
logs in again, the static signature used to log in is compared with the registered signature to determine whether
the user is legitimate. Since the oline signature veriication system represents signatures as images, the key to
achieving accurate signature veriication is to extract the desirable features from the signature image.

Many research eforts have been devoted to inding good handcrated feature representations for oline sig-
natures. Oliveira et al. [49] used graphometric features, such as the ratio of height/width, the symmetry, and the
empty spaces between strokes, to examine handwriting for signature veriication. Drouhard et al. [19] leveraged
the directional probability density function obtained from the gradient of the signature outline to represent the
directional features, which respond to the direction of the signature’s strokes. With the development of deep
learning, many researchers have atempted to use deep learning models to extract features directly from the raw
signature image. SigNet [15] modeled the signature veriication task with a convolutional Siamese network to
realize oline writer-independent signature veriication. Soleimani et al. [59] proposed to use Deep Multitask
Metric Learning (DMML) for oline signature veriication by applying skilled forgery knowledge in the feature
learning process. Hafemann et al. [25] formulated the oline signature veriication problem as a meta-learning
problem and used extended Model Agnostic Meta Learning (MAML) to improve the classiier adaptation to new
users. However, oline handwriten signatures based on static images are vulnerable to being forged.

Online signature veriication systems. Online signature veriication is also known as dynamic signature
veriication. Unlike oline systems, online signature veriication systems utilize the dynamic information (e.g.,
signing velocity, signing pressure, and stroke order) of the signer while signing as the basis for veriication.
herefore, online signature veriication systems present higher reliability than conventional oline approaches.

hemost classic online signature acquisition devices are digital tablets [38] and electronic pens [13, 46, 50, 55],
both of which can obtain temporal dynamic information (e.g., signing pressure, pen inclination, velocity, and
acceleration) about the user’s signature process through the built-in sensors, such as gyroscope, inertial measure-
ment unit, and strain gauge. However, both of these methods require signing on a designated digital signature
medium (e.g., tablet), which makes them inapplicable to situations where users sign on paper documents in
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their daily lives. To solve this problem, wearable device-based online signature veriication methods are pro-
posed. For example, Levy et al. [40] leveraged the smartwatch to capture movement data (i.e., accelerometer
and gyroscope measurements) from the built-in sensors during the signature execution process, and trained a
classiier to determine whether a query signature was genuine or forged. PPGSign [51] proposed to leverage
the photoplethysmography (PPG) sensors in the wrist-worn wearable device to obtain the unique blood low
changes in the user’s hand movement during the signing process to verify the authenticity of the signature.
Kamel et al. [37] proposed to use the data glove to obtain information about the multiple degrees of freedom
obtained for each inger and hand, and used the singular value decomposition numerical tool for signature classi-
ication and veriication. Although these solutions do not require a signature medium, they do require the signer
to wear speciic hardware devices, which is unrealistic in practice and reduces the user experience. Yasuda et
al. [79] proposed to use low-cost webcams for non-intrusive online handwriten signature veriication. However,
this solution raises privacy issues.

he latest works take advantage of the sensing capability of acoustic signals. ASSV [17] is the irst system that
uses acoustic signals transmited and received by smartphones to realize signature veriication. SilentSign [9]
is another acoustic-based online signature veriication system that leverages acoustic signals to measure the
change in distance of the pen tip when signing and develops a phase-based distance measurement method for
signature veriication. However, existing acoustic-based handwriten signature veriication schemes model the
whole hand/pen as a single relection point and intentionally neglect weak multi-path signals. his approach
means that the inal signal obtained is the result of the two moving parts (the user’s hand and the pen’s upper
part, which will be explained in Sec. 3.2.3) canceling each other out, which is insuicient to accurately cap-
ture the user’s hand/pen movement features during the signing process, particularly when there are signiicant
changes in the signature position. Additionally, existing acoustic-based methods leverage the channel impulse
response (CIR) phase to estimate the hand/pen moving paterns, which is heavily dependent on the target dis-
tance [70]. For instance, experiments conducted at ASSV [17] reveal that when the line-of-sight (LOS) distance
between the signature position and the acoustic sensor is 6 cm, the average signature veriication accuracy is
89.95%, but it rapidly drops to 29.95% when this distance is reduced to 3 cm. Similarly, although SilentSign [9]
demonstrates beter performance with its designed algorithms, the accuracy decreases by 20% when the relative
vertical position (perpendicular to LOS) changes by 10 cm, which is not acceptable in signature veriication. In
this paper, we use commercial mmWave radar for online handwriten signature veriication. mmSign has higher
accuracy and stronger anti-interference capability with the large bandwidth of mmWave compared to the above
acoustic-based online signature veriication methods.

2.2 mmWave Sensing
With the rapid development of wireless sensing technologies, recent works propose to leverage wireless signals,
such as acoustic signals [10, 66], Wi-Fi signals [26, 67], and mmWave signals [35, 42] for various ine-grained
sensing tasks. Among these wireless signals, mmWave, with its short wavelength and high frequency, can sense
the tiny movements of the target more accurately.

Recently, researchers use mmWave in various sensing tasks, such as human activity recognition [36, 57], vi-
tal sign monitoring [11, 78], audio reconstruction [30, 63], and user identiication [23, 77]. In addition, many
researchers use mmWave for authentication. For example, VocalPrint [41] uses mmWave signals to capture
the unique characteristics of a user’s vocal cord vibrations when they are speaking to achieve a secure and
atack-resistant authentication. HeartPrint [68] is a commercial mmWave radar-based multi-user authentica-
tion method, which irst locates and separates diferent users through a designed clustering algorithm, and then
uses the proposed signal energy comparison method and feature extraction method for heartbeat feature extrac-
tion to achieve continuous multi-user authentication. Likewise, M-Auth [69] adopts a similar idea to leverage the
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user’s unique breathing patern for multi-user authentication. Moreover, mmFace [75] implemented a reliable
liveness detection and face authentication system that works even under the occlusion of face masks by extract-
ing facial biometric and structural features when the mmWave signals bounce of the human face. To the best
of our knowledge, mmSign is the irst work that uses commodity mmWave radar to achieve online handwriten
signature veriication.

2.3 Few-shot Learning in Wireless Sensing
Despite the success of deep learning in various tasks [27, 56, 81], they require large amounts of data and mul-
tiple iterations for training multiple models in diferent scenarios. To address this problem, few-shot learning
algorithms [20, 58, 61] are proposed to achieve fast domain adaptation with only a few labeled samples from
diferent conditions.

With the prosperity that few-shot learning has brought to the computer vision area [65, 80], more and more
researchers have harnessed few-shot learning methods into the implementation of wireless sensing systems. For
instance, MetaSense [22] designs a task generation strategy to efectively leverage the available data and enhance
the performance of meta-training. GazeGraph [39] is a cognitive context sensing system that uses the human
gaze as a sensing modality, which uses the few-shot learning strategy to quickly adapt to unseen perceptual
scenarios using a small number of instances. OneFi [73] is a Wi-Fi-based human gesture recognition system
that enables the recognition of unseen gestures with only one (or few) labeled samples assisted by the few-shot
recognition mechanism. In addition, CAUTION [64] is able to build an accurate user model for a Wi-Fi channel
state information (CSI)-based human authentication system with a very limited number of CSI training samples.
Inspired by the above works, we design a novel meta-learning strategy to adapt our handwriten veriication
model to new users with a few samples.

3 SYSTEM DESIGN

3.1 Overview
Fig. 1 presents the overview of mmSign, a mmWave-based online handwriten signature veriication system
built on commodity mmWave radar. he core idea of mmSign is to make the base model learn to recognize
the authenticity of a new user’s handwriten signature quickly, thereby enabling fast adaption to new users
with only a few labeled samples. Speciically, there are two phases in mmSign: base model training phase and
meta-learning-based new user adaptation phase.

Base model training phase:hemmWave radar irst obtains the raw FMCW data when the users sign their
names. hen, the static noises are iltered from the raw FMCW data, and the sub-intermediate frequency (IF)
signals are obtained by the designed sub-signal generation algorithm. Next, the generated sub-IF signals are
used to obtain the Range-Doppler Maps (RDMs) that respond to the hand movement through the designed RDM
generation algorithm, and the generated RDMs are transformed into the time-velocity featuremap. Finally, in the
base model training module, the obtained feature maps are irst augmented by the proposed data augmentation
algorithms and then fed into the transformer-based veriication model for based model training.

Meta-learning-based new user adaptation phase: When a new user registers his/her handwriten signa-
ture in mmSign, a meta-learning framework is introduced to avoid intensive data re-collection and reduce the
time overhead of the model training process. In addition, a designed task generation strategy is used to provide
multiple tasks in the meta-training process to improve the eiciency of meta-training. hese generated tasks are
leveraged to teach the base model to learn a new task (i.e., verify the genuineness of the new user’s handwriten
signature) quickly and update the base model with only a few signature samples.
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Fig. 1. System overview.

3.2 Data Processing
3.2.1 Data Collection and Static Noise Elimination. hemmWave radar transmits FMCW signal, a.k.a, chirp.he
frequency of the chirp signal increases linearly with time � and can be expressed as

� = �0 + ��, (1)
where �0 is the starting frequency and � is the frequency modulation slope. Suppose the amplitude of the trans-
mited signal at time � is �, then the transmited sinusoidal FMCW signal �

�
(�) can be expressed as

�
�
(�) = � cos

[

2�

(

�0� +
��2

2

)]

. (2)

When the transmited signal encounters an obstacle (e.g., the user’s hand) at a distance � , the radar will receive
a delayed version of the transmited signal �

�
(�), which can be expressed as

�
�
(�) = �� cos

[

2�

(

�0 (� − �) +
� (� − �)2

2

)]

, (3)

where � is the path loss, � = 2�/� is the time delay, and � is the speed of light. Finally, the transmited signal �
�
(�)

is mixed with the received signal �
�
(�), and a low-pass ilter is used to ilter out the sum frequency components

to obtain the IF signal:
�
��
(�) = ��� {�

�
(�) · �

�
(�)} = �

��
cos

(

2� �
��
� + �

��

)

, (4)
where�

��
is the amplitude of the IF signal, �

��
= �� = 2��/� is known as the beat frequency, and �

��
is the phase.

herefore, the IF signal ater sampling can be expressed as
�
��
(�) = �

��
(�) · � (�), � = 0, 1, ..., �� − 1, (5)

where � (�)is the unit step sequence, and �� is the number of samples per IF signal. Combining the signals from
�� radar frames, we can obtain the raw 3D matrix � of size �� × �� × �� , where �� is the number of IF signals
in each frame.
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Algorithm 1: Static Noise Elimination Algorithm
Input :�: raw IF signal matrix

�� : frame number
�� : IF signal number of each frame

Output :�′: denoised IF signal matrix
1 Initialize an empty denoised IF signal matrix �′
2 for � = 0; � < �� − 1; � = � + 1 do
3 �← ∅ ⊲ Initialize the static noise vector
4 �← 1

��

∑�� −1
�=0 � (�,�, :) ⊲ Calculate the static noise vector

5 for � = 0; � < �� − 1; � = � + 1 do
6 � ← � (�, �, :) ⊲ Get the �-th raw IF signal in the �-th frame
7 �′ (�, �, :) ← � − � ⊲ Calculate the denoised IF signal vector
8 end
9 end

In addition to the user’s hand movements, mmWave radar senses static information about the user’s body as
well as the surrounding environment (e.g., walls, tables, and chairs), which leads to the generated feature maps
containing a lot of static noises. To eliminate these static noises, we design a static noise elimination algorithm
(see Alg. 1). Speciically, the mean value of all chirps in each radar frame is leveraged to represent the static noise
vector (Lines 3–4). hus the denoised signal can be obtained by subtracting the static noise vector from the raw
signal (Lines 6–7).

3.2.2 Sub-signal Generation. Ater removing the static noises, we need to accurately locate the position of the
user’s hand to extract useful signals that can relect the user’s handwriten signature execution process. However,
low-cost commercial mmWave radars cannot guarantee accurate range estimation under a low signal-to-noise
ratio (SNR) based on a single IF signal.

mmVib [35] proposes a sub-signal generation method to achieve robust range estimation, which uses a sliding
window to separate the IF signal into diferent sub-signals according to diferent starting frequencies. Although
this method provides multiple observations (sub-signals) at the same time, the bandwidth of each sub-signal
becomes 1/� of the original IF signal (� is the number of generated sub-signals). Because the range resolution
of mmWave radar is proportional to the bandwidth of mmWave signal, this method results in range resolution
reduction for the individual sub-signal.herefore, as shown in Fig. 2, we design a sub-signal generation algorithm
that can use the full bandwidth information of the original IF signal and does not lead to a decrease in range
resolution. Speciically, for each IF signal, we generate multiple sub-signals by

�� (�) = ��� (�)

� −1
∑

�=0

� [� − ( �� + � − 1)], � = 1, 2, ..., �, (6)

where �� (�) represents the �-th sub-signal,� is the number of sub-chirps, and� = ⌊��/�⌋ is the length of the
sub-signal.hese sub-IF signals can be considered to be transmited at the same time.herefore, these sub-signals
will be used for cross-referencing with each other. Compared to the method in mmVib, our method obtains each
sub-signal using the full bandwidth information and therefore does not sacriice range resolution.

3.2.3 Range-Doppler Map Generation. Ater obtaining multiple sub-signals, we need to extract accurate hand
movement information from them. We irst apply the Fast Fourier Transform (i.e., range FFT) on each sub-signal
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to get the range information. As shown in Fig. 3, since there are other moving objects in front of the radar besides
the user’s hand (e.g., the user’s torso and other pedestrians or moving objects in the environment), the range FFT
will generate multiple peaks at diferent IF frequencies. We use the range bin where the irst peak is located as
the position of the user’s hand since the user’s hand is the closest moving object to the radar. For the �-th chirp,
assuming that the range bin corresponding to the irst peak of the �-th sub-signal ater Range-FFT is ��� , then
we can obtain the accuracy range bin �� by majority voting. Since the user’s hand will occupy multiple range
bins, we locate the hand position through a window. Assuming that the window size is �, the range bin of the
user’s hand in the �-th IF signal is [�� − �

2
, �� +

�
2
]. By repeating the above operation for each IF signal, we can

obtain the range of interest (red dashed box in Fig. 3) by the following expression:

� = {� ∈ � : ���� −
�

2
≤ � ≤ ���� +

�

2
}, (7)

where ���� and ���� are the minimum and maximum values of all range bins in the frame, respectively. hen,
we set the values outside the region of interest to zero to exclude other dynamic noises. We perform another FFT
(i.e., Doppler FFT) on multiple IF signals in the slow-time dimension to obtain the velocity variation information
during the signature process. hrough the above steps, we can get the RDMs that relect the user’s signature
execution process.

Fig. 4a shows one RDM frame generated by the user during the signature execution process. Our obtained
RDM usually contains two velocity components of equal magnitude and opposite direction. his is because the
pen is divided into two parts, the upper part and the lower part, with the grip point (red dot in Fig. 4b) as
the center during the user’s signature process. As shown in Fig. 4b, the velocity direction of the upper part is
opposite to the hand movements direction, and the velocity direction of the lower part is the same as the hand
movements direction. he intensity of each component of the RDM depends on the radar cross-section (RCS).
Since the efective relective area of the upper part of the pen is smaller than that of the hand, the intensity
generated by the pen movement is smaller than that of the hand movement.

3.2.4 Time-velocity Feature Transformation. During the signature execution process, the change in distance
from the user’s hand to the mmWave radar is extremely small, which cannot be accurately sensed by the
mmWave radar. herefore, we use velocity change information during the signature execution process as the
signature veriication feature.
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Fig. 4. Feature extraction.

To obtain the velocity change information during the signature execution process, we use the following equa-
tion to transform the RDM of all frames into a 2D time-velocity feature map:

� (�,� ) =

∑��

�=1 [��� (�,�, � ) · � � ]

��
, � ∈ [1, �� ], � ∈ [1, ��], (8)

where�� is the number of Range FFT,�� is the number of Doppler FFT, � � is the range bin index, and ��� (�,�, � )
represents the value corresponding to Doppler bin � and range bin � in the �-th RDM frame. Fig. 4c shows the
time-velocity feature map we inally obtained, which relects the velocity variation of the user’s hand and pen
during the signature execution process.

3.3 Data Augmentation
To improve the performance of the base model using limited data, we propose three data augmentation methods
based on the variation characters of the time-velocity feature maps obtained from the mmWave signal during
the signature execution process. he basic idea of data augmentation techniques is to synthesize new data by
transforming existing labeled training samples so that the neural network model can learn a broader range of
intra-class variations. By observing the generated time-velocity feature maps, we ind three common types of
variations. he irst type is the intensity variation of a speciic component in the feature map due to diferent
pen types and pen grip positions. he second type is the variation of reaction time and the signing speed. he
third type is the magnitude variation of the user’s hand movements when signing. Based on these observations,
we design three data augmentation methods that can be eiciently implemented to augment the training set.

3.3.1 Augmenting Data with Velocity Transformation. Asmentioned in Sec.3.2.3, the pen’s upper part generates a
velocity component in the opposite direction of the hand movement during the signing process, whose intensity
depends on the RCS of the pen’s upper part. During the signature execution process, the RCS varies depending
on the type of pen and the grip position, which results in diferent time-velocity feature maps obtained by the
same user when signing with diferent types of pens. To investigate the impact of the pen’s RCS, we use pens
with diferent lengths to sign on the same surface. Speciically, we use a longer pen (14 cm) and a shorter pen
(7 cm) to generate the corresponding time-velocity feature maps. As shown in Fig. 5a, due to the large RCS
of the longer pen’s upper part, the mmWave radar senses two velocity components with opposite directions.
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Fig. 5. Feature maps obtained by diferent types of pens.

herefore, two velocity components with opposite directions exist in the same frame of the inal generated time-
velocity feature map. However, the RCS of the shorter pen’s upper part is very small (or equal to zero), and
the mmWave radar cannot sense the velocity component caused by the pen’s upper part. herefore, only the
velocity component induced by the hand movements exists in the obtained time-velocity feature map as shown
in Fig. 5b. With the above analysis, we augment the data by changing the intensity of the pen movement velocity
component. Speciically, for each RDM in Sec. 3.2.3, we divide it into two parts: the positive velocity part and
the negative velocity part. We keep the velocity part generated by the hand movements ixed and multiply the
other velocity part by a decay factor � within [0, 1].

3.3.2 Augmenting Data with Time Transformation. We ind that the following two factors have a signiicant
impact on the extracted feature maps. 1) Reaction time.he user’s reaction time when signing is inconsistent,
so the start time of valid signature informationmay have diferent ofsets.hese temporal ofsets can be achieved
by translating the feature maps in the horizontal direction. Speciically, for the obtained time-velocity feature
matrix, we irst determine the signature start time �1 and the end time �2 by thresholding, and then cyclically
shit the elements in the time-velocity feature matrix by � elements, where � is less than the smaller of �1 and
�2 to prevent the temporal features of the signature from being interrupted. 2) Signing time. he diferent
signing speeds of the user can result in diferent signature execution times. hese two factors can be changed
by transforming the time-velocity feature map in the time-dimension for data augmentation. he diference
in signature execution time can be achieved by stretching or compressing the original time-velocity feature.
Speciically, we irst compress or stretch the data between �1 and �2 by downsampling or interpolating to � times
the original data, and then interpolate or downsample the data outside the range of [�1, �2] to make sure that
the length of the augmented data is the same as the original data, where � is the compress/stretch factor within
[−0.7, 1.3].

3.3.3 Augmenting Data with Magnitude Transformation. We ind that the intensity of the time-velocity feature
maps generated during the user’s signature changes, due to the magnitude of the user’s hand movements. Gen-
erally, the greater the magnitude of the user’s signature movements, the darker the color of the feature map,
and vice versa. herefore, we simulate the efect of the user’s diferent hand movement magnitudes during the
signature execution process by changing the color range of the time-velocity feature map. Speciically, we irst
divide the entire feature map into eight segments equally by frame (ten frames per segment). hen four of these
segments are randomly selected for intensity transformation. For the selected segment, suppose the color range
is [�,�], we can change the intensity of the feature map by adjusting the color range to [�, (1 + �)�], where � is
the transformation factor within [−0.3, 0.3].
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Fig. 6. Data augmentation. Based on the efect of diferent velocity, time, and amplitude variations on the mmWave signals
during the signature execution process, we propose three data augmentation methods to improve the performance of the
base model training.

Fig. 6 shows the time-velocity feature maps obtained using the above data augmentation methods. Note that
the label of augmented data is the same as the original data, and each method has a parameter to adjust the level
of data augmentation. All of these methods can be easily applied in the meta-training phase and generalized in
the training data set to accommodate the negative impact of signature inconsistencies and user-speciic problems.
he performances of the data augmentation will be evaluated in Sec. 4.4.

3.4 Signature Verification
Ater obtaining the time-velocity feature map of the signing process, we need to verify the authenticity of the
signature. he time-velocity feature map is essentially a sequence of data, as it represents temporal information
such as the velocity and themagnitude changes of the handmovements over time during the signature execution
process. In mmSign, we design a transformer-based veriication model to derive a high-level representation of
the input time-velocity feature map and obtain the accurate signature veriication result.

he architecture of our veriication model is illustrated in Fig. 7. he obtained time-velocity feature map is
irstly transformed into multiple linear vectors with time information by patch embedding and time embedding.
hen these linear vectors are used as the input of the transformer encoder to obtain long-term dependencies
among all the time patches. he multi-head self-atention (MSA) [62] is leveraged to serve as the primary prim-
itive of the encoder, which reduces the dependence on external information and is superior in capturing the
internal correlation of sequential data or features. Ater processing with the transformer encoder, we obtain a
high-level representation of the input time-velocity feature map. Finally, we use a multi-layer perceptron (MLP)
to perform binary classiication and determine whether the input signature is generated by a legitimate user.
We present the details of each module below.

3.4.1 Feature Embedding. he input time-velocity feature map irst needs to be converted by the feature embed-
ding block into time patches, which are served as the input of the transformer encoder. Speciically, the feature
embedding block contains two layers, namely the patch embedding layer and the time embedding layer. he
input of our model is the time-velocity feature map � ∈ R�×� ×� , where � ,� , � are the height, width, and
channel number of the time-velocity feature map, respectively. As mentioned above, the time-velocity feature
map is essentially a temporal sequence and does not contain spatial information compared to the image input of
the traditional vision transformer [18]. herefore, we only process in the time dimension (i.e., width) and divide
it into time patches �� ∈ R

�×(� ·� ·� ) by patch embedding layer, where � is the width (time duration) of each
patch and � =� /� is the number of patches. We then laten the time patches and map them to � dimensions
using a linear projection with a parameter matrix� ∈ R(� ·� ·� )×� . A special classiication token ���� ∈ R

� is
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Fig. 7. Verification model. The obtained time-velocity feature map is first partitioned into multiple patches and appended
with temporal information in the feature embedding block. Then, the time patches are fed into the transformer encoder to
obtain a high-level representation. Finally, the verification result can be obtained by the MLP head.

atached to the beginning of embedded time patches to represent the meaning of the entire sequence [14]. he
atention mechanism processes all the input patches in parallel, which means that the temporal information in
the original feature map is lost. herefore, a time embedding layer is used to add temporal information for each
time patch. Speciically, we add �� = (�0, �1, �2, . . . , �� ) to each patch to retain the absolute temporal information,
where �� ∈ R� . In summary, the latened time patches ater the feature embedding block can be expressed as

� = [���� ;�
1
�� ;�2

�� ; . . . ;��
� � ] + �� = [�0; �1; . . . ; �� ], (9)

where �� ∈ R� is the �-th time patch.

3.4.2 Transformer Encoder. he latened time patches are then fed into a transformer encoder, which consists
of alternating layers of MSA andMLP, with the layer normalization [5] connected by residual structures between
each layer.

Multi-head self-attention block. he structure of the MSA block is shown in Fig. 8. Multi-head atention
extends the model’s ability to focus on the diferent time duration of the input time-velocity feature map by
jointly atending information from diferent representation subspaces. We apply multi-head atention with ℎ
heads, where the self-atention function is calculated ℎ times. Given the latened time patches � obtained by
feature embedding, the trainable query matrix �� ∈ R�×� , key matrix �� ∈ R�×� , and value matrix �� ∈

R
�×� are irst multiplied with the time patches � to obtain the query matrix � , key matrix � , and value matrix

� . hen the query matrix, key matrix, and value matrix are linearly projected ℎ times with diferent, learned
linear projections��

� ,��
� , and��

� ∈ R
�× �

ℎ (1 ≤ � ≤ ℎ) to generate linear projected queries, keys, and values:

�� = ��
�
� , � � = ���

� , � � = ���
� . (10)

hen the atention of each head is calculated for each group of �,� , � by the following equation:

����� = Attention(�� ,� � , � � ) = softmax

(

���
⊤
�

√

�/ℎ

)

� � . (11)

By concatenating the output sequence ����� of each head, we can obtain the inal output of the multi-head
self-atention:

MultiHead(�,� , � ) = Concat(����1,����2, . . . ,����ℎ)�
� , (12)

where�� ∈ R�×� is the linear projection matrix.
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Multi-layer perception block.heoutput of theMSA block is fed to theMLP block ater layer normalization.
he MLP block is shown in Fig. 9, which contains two fully connected (FC) layers, two dropout layers, and one
GELU layer. he output of MLP is residually connected with the output of the MSA to obtain the transformer
encoder output.

3.4.3 Model outputs. Ater the transformer encoder, a high-level presentation � ∈ R(�+1)×� of the input time-
velocity feature map is inferred. Note that we append a special classiication token ���� to the embedded time
patches in the feature embedding block, which is used to represent the meaning of the entire input sequence
(see Sec.3.4.1). herefore, we use the output of the transformer encoder �0 corresponding to the classiication
token as the input of the MLP head. he MLP head contains a fully connected layer to get the inal veriication
result.

he transformer architecture presents a novel self-atention mechanism, which enhances its ability to capture
global temporal features in the context of signature processing. Despite the input data being presented in image
format, it inherently contains temporal information related to variations in the user’s signature velocity and
the RCS intensity caused by diferent signature postures at diferent time periods. he self-atention mechanism
adeptly captures the internal relationships within this information, enabling the transformer structure to extract
comprehensive time-dependent sequence features during the signature execution process. In addition, instead
of directly adopting the patch embedding and position embedding methods in the traditional vision transformer
ViT [18], we design a new feature embedding scheme for the unique temporal nature of the mmWave feature
maps we obtain, so as not to destroy the complete timing information of particular time periods, as described
in Sec. 3.4.1. Finally, using multiple heads ensures that the model can extract user-speciic features from several
diferent subspaces. he above design choices ensure that the veriication model extracts features with high
accuracy and robustness.

3.5 Meta-learning-based New User Adaptation
Although the proposed veriication model can achieve good veriication performance, like most existing hand-
writen signature veriication schemes, it requires extensive signature collection during the new user registration
phase, which is unrealistic and user-unfriendly. herefore, how to reduce user signature collection eforts in the
registration phase while maintaining strong system performance is an urgent problem to be solved. In mmSign,
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Fig. 10. Task generation. We propose a task generation strategy based on forged signature types, which utilizes random
forged signatures and genuine signatures to form random tasks, skilled forged signatures and genuine signatures to form
imitation tasks, and imitative forged signatures and genuine signatures to form imitative tasks, thereby improving the base
model’s ability to resist forgeries when new users adapt.

to reduce the data collection eforts, a meta-learning strategy is introduced to enable new users to quickly adapt
to the veriication system using only a few training samples.

3.5.1 Problem Formulation. Meta-learning [28] adopts the ”learn to learn” concept and uses prior knowledge to
generalize to new tasks with limited training samples rapidly. In mmSign, we formulate the problem as follows.
We consider the signature veriication task for each user as a meta-learning task.We have a source datasetD�����
which is leveraged to generate the task set T . Each task �� ∈ T contains a support set ��� and a query set ��� ,
which do not intersect (��� ∩��� = ∅). Since each task T� contains two types of signatures (i.e., genuine signatures
and forged signatures), our problem is a 2-way �-shot problem, where � is the number of genuine or forged
signatures in the support set and query set of each task. herefore, the objective of our meta-learning scheme
is to use the task set T generated by the source dataset D����� to train the base model to learn how to quickly
adapt to the signature veriication tasks for new users using only � labeled samples.

3.5.2 Task Generation. Existingmeta-learningmethods use random sampling from the large available dataset to
generate multiple tasks for based model training [21, 58], which is ineicient in the ield of signature veriication
where the signature data is very limited. herefore, how to efectively leverage the limited signature data to
generate meta-learning tasks applicable to our signature veriication problem is a unique challenge.

In the sector of signature veriication, two types of traditional forgery atacks exist: random forgery atacks,
where the atacker does not know the user’s signature and uses a random signature instead; and skilled forgery
atacks, where the atacker has access to the user’s signature and performs an imitation [25, 31, 33]. In addition
to traditional forgery atacks, our mmWave online signature veriication system can be subject to a new type of
atack, which we call an imitative forgery atack. In imitative forgery atacks, the atacker can obtain information
about the user’s signature execution process and tries to fool the system by imitating the user’s signing process.
Considering these three diferent types of forgery atacks, we design a task generation scheme to improve the
resistance of the veriication model to forgeries when new users adapt, instead of randomly generating tasks
using the source dataset. Speciically, we generate three diferent types of tasks for each user �: random tasks
��� , which consist of the user’s genuine data �� and other user’s data � − �� (i.e., random forgery signatures);
skilled tasks� �� , which consist of the user’s genuine data �� and skilled data � ′� (i.e., skilled forgery signatures);
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Algorithm 2:Meta-training Algorithm
Input :D����� : source dataset for meta-training

� , � : learning rates
Output :� : meta-learned weights of the base model

1 Randomly initialize �
2 while not done do
3 Generate three kinds of tasks using D����� to build the task set T ⊲ See Sec. 3.5.2
4 foreach �� ∈ T do
5 ��� ← � support samples from ��
6 ��� ← � query samples from �� ⊲ ��� ∩��� = ∅

7 Evaluate ∇�L�� (�� ) with ���
8 � ′�� ← � − �∇�L�� (�� ) ⊲ Calculate task-speciic parameters
9 Evaluate ∇�L�� (�� ′ ) with ���

10 end
11 Update � ← � − �∇�

∑

�� ∈T
L�� (�� ′ ) ⊲ Meta-update

12 end

and imitative tasks� �� , which consist of the user’s genuine data �� and imitative data � ′′� (i.e., imitative forgery
signatures). It is worth noting that since each user (or task) contains many genuine signatures and forgery
signatures, each user can generate multiple random tasks, skilled tasks, and imitative tasks in the meta-training
phase. hese three task sets form our inal task set T . he efectiveness of our proposed task generation scheme
will be evaluated in Sec. 4.5.

3.5.3 Meta-training. With the generated tasks in Sec. 3.5.2, we train the base model via meta-learning. Specii-
cally, mmSign employsmodel-agnostic meta-learning (MAML) [21] to update the basemodel parameters. MAML
can be applied to any gradient descent-based deep neural network with only a few gradient steps needed for
model parameters updating. MAML assumes the existence of initial parameters that can be transferred to new
tasks with only a few shots, and it performs initial parameter training with the goal of making the trained
parameters adaptive to changes in diferent tasks.

For the data in each task�� , we divide it into a support set ��� and a query set��� , each of them has � samples
(�-shot). he base model training process is illustrated in Alg. 2. For each task, we evaluate ∇�L�� (�� ) with �
samples in ��� (Line 7), then the adapted task-speciic parameters can be calculated as

� ′�� = � − �∇�L�� (�� ), (13)
which is called the inner loop update, where ∇�L�� (�� ) is the cross-entropy loss in the task and is deined as

L�� (�� ) =
∑

(� � ,� � ) ∈���

� � log �� (� � ) + (1 − � � ) log �� (1 − � � ). (14)

hen the meta-objective function is deined as

argmin
�

∑

�� ∈T

L�� (�� ′ ), (15)

which is designed to ind parameters � that can minimize the sum of all the task losses, and each task loss is
evaluated by��� (Line 9). Finally, stochastic gradient descent (SGD) is leveraged to minimize the meta-objective
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Fig. 11. Experimental devices. Four types of signature pens and three diferent signature surfaces are used to evaluate our
system.

function and obtains the parameters � :

� ← � − �∇�

∑

�� ∈T

L�� (�� ′ ), (16)

which is called the outer loop update. he base model with favorable initial parameters � can be obtained ater
the above process.

3.5.4 Model Adaptation. Ater the base model obtained by the above meta-training process, we ine-tune the
base model using the new user’s data, which contains only �-shot. he model adaptation process can be ex-
pressed as

�� = � − �∇�L� (�� ), (17)
where �� is the parameters of the new user’s ine-tuned model.

4 EVALUATION
In this section, we irst introduce the experimental setup and the data collection of mmSign. hen, we conduct
a thorough experiment to demonstrate the performance of mmSign and its ability to withstand forgery atacks.
Finally, we deploy mmSign on a Raspberry Pi to test its energy and time consumption for signature veriication.

4.1 Experimental Setup
4.1.1 Implementation. As shown in Fig. 11, we use a commercial FMCW radar AWR16421 and real-time data-
capture adapter DCA1000EVM2 for raw data collection. he default frame rate of mmWave radar is 10 FPS, and
the number of chirp loops is 255. In addition, to verify the robustness of mmSign, we conduct experiments using
four pens with diferent materials and lengths, and three diferent signature surfaces, as will be described in
Sec. 4.8. he proposed veriication model is trained oline on a desktop PC with an Intel i7-10700 CPU, 64GB
RAM, and RTX 3080 GPU. Keras 2.6.0 [12] with TensorFlow 2.6.0 [1] backend is used for model construction and
training.

1htps://www.ti.com/product/AWR1642
2htps://www.ti.com/tool/DCA1000EVM

ACM Trans. Sensor Netw.

https://www.ti.com/product/AWR1642
https://www.ti.com/tool/DCA1000EVM


18 • Han et al.

To evaluate the performance of mmSign, we consider the veriication accuracy which is widely adopted in
the previous handwriten signature veriication systems [16, 31]. Veriication accuracy indicates the fraction of
correctly classiied signatures to the total number of signatures. A higher veriication accuracy indicates that
the system has beter usability to correctly distinguish between genuine signatures and forged signatures. In
addition, we report the false rejection rate (FRR) of our system, which represents the percentage of authentic
signatures that are erroneously classiied as forgeries by mmSign. A lower FRR signiies the system’s improved
capacity to correctly identify authentic signatures and to decrease the number of false rejections, which is crucial
for ensuring a seamless and dependable user experience.

4.1.2 Atack Scenarios. We consider three types of forgery atacks performed by atackers, which are random
forgery atacks, skilled forgery atacks, and imitative forgery atacks.
• Random forgery atacks. he atacker does not know any information about the user, and he/she tries to
use a random signature to fool the veriication system.
• Skilled forgery atacks. he atacker knows the user’s signature, but not the user’s signature execution
process, and he/she tries to fool the veriication system by imitating the user’s signature.
• Imitative forgery atacks. he atacker observes the whole signature execution process when the user
performs a signature through secretly ilmed videos or shoulder-suring. he atack tries to fool the veri-
ication system by imitating the user’s signature execution process.

he irst two atacks are common atacks in the signature veriication sector, while the third atack is specii-
cally against our mmWave signature veriication system. We will evaluate these three atacks in Sec. 4.9.

4.2 Data Collection
We recruited 30 volunteers, including 18 males and 12 females, of diferent ages and hand sizes for data collec-
tion3. All volunteers were informed about how mmSign works, and each volunteer performed ive signatures to
familiarize themselves with mmSign before the oicial data collection. Before conducting the data collection, the
volunteers signed the consent forms that clearly stated the purpose, procedure, and data usage of the study. We
conducted experiments using an Apple pencil (Pen 1 in Tab. 2) and an iPad, with the signature box (4 cm by 2 cm)
located directly in front of the mmWave radar at a distance of 30 cm in the oice. he signatures we collected
are in English, and we also evaluate the impact of diferent signature languages on our system in Sec. 4.7. he
data collection is divided into the following two parts. 1) Genuine signatures collection: Each volunteer was
required to provide 50 signature samples as genuine signatures. During the user’s signature execution process,
we used video to record the process for imitative forged signature collection. herefore, we have 50 genuine
signatures per volunteer. 2) Forged signatures collection: For each target volunteer, we randomly selected
ten volunteers from the remaining 29 volunteers for the forged signature collection. As mentioned in Sec. 4.1.2,
there are three types of forged signatures, which are random forgery, skilled forgery, and imitative forgery. We
randomly chose ive genuine signatures from each volunteer as random forgeries. For skilled forgeries, we asked
each volunteer to imitate the signature of the target user ive times. Finally, we asked the ten volunteers to watch
the target user’s signature video and imitate the signature execution process of the target user ive times as imi-
tative forgeries. As a result, we have 50 random forged signatures, 50 skilled forged signatures, and 50 imitative
forged signatures for each target user.

he above raw data is augmented by our three data augmentation methods introduced in Sec. 3.3 to obtain
our source dataset D����� . Speciically, for each data augmentation method, we augment the original data twice
using two diferent parameters. herefore, for each volunteer, we have 50 × 7 = 350 genuine signatures, 50 ×
7 = 350 random forged signatures, 50 × 7 = 350 skilled forged signatures, and 50 × 7 = 350 imitative forged

3Ethical approval has been granted by the corresponding organization (No. H002254).
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Fig. 12. Overall performance.

signatures. hese data will be used as the source dataset to generate tasks for meta-learning using our proposed
task generation method in Sec. 3.5.2.

4.3 Overall Performance
We use the collected dataset to evaluate the performance of mmSign. he leave-one-volunteer-out training
method is leveraged to evaluate the performance of mmSign. Speciically, we iteratively select one volunteer
as the newly registered user and use the remaining 29 volunteers’ data as the source data to train the base model.
We report the average veriication accuracy of all volunteers. hus, we can assess whether our system is user-
independent, i.e., whether it works for newly registered users. Meanwhile, to evaluate the performance of our
meta-learning framework, we compare mmSign with the transfer learning. For transfer learning, we train the
base model with all data from 29 volunteers and ine-tune the base model with the new user’s data. Since the
random forged signatures in our dataset are composed of the genuine signatures of other users, we only use
skilled forgeries as forged signatures during the base model training phase to avoid label conlicts in transfer
learning.

he comparative performance of mmSign and transfer learning is depicted in Fig. 12. When implementing
transfer learning, the veriication accuracy in scenarios of one-shot, three-shot, ive-shot, and ten-shot stands
at 59.49%, 65.44%, 72.79%, and 82.61%, correspondingly. While mmSign atains a veriication accuracy of 84.07%,
87.31%, 91.12%, and 96.54% in the one-shot, three-shot, ive-shot, and ten-shot setings, respectively. Additionally,
as evidenced in Fig. 12b, the FRR of transfer learning is higher than that of mmSign by 25.87%, 23.20%, 20.88%,
and 11.30% for the one-shot, three-shot, ive-shot, and ten-shot scenarios, respectively. his disparity in perfor-
mance can be atributed to the employment of a novel meta-learning approach by mmSign, which facilitates the
acquisition of knowledge from multiple tasks within the task space, in contrast to transfer learning that only
optimizes a single task. Consequently, mmSign exhibits a more eicient adaptation to new users with limited
data.

4.4 Impact of Data Augmentation
In this experiment, we evaluate whether the proposed three data augmentation methods can enhance the perfor-
mance of the base model during the meta-training process and thus improve the veriication accuracy of newly
registered users. We consider the following ive diferent scenarios: 1) without data augmentation (w/o), 2) data
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augmentation with velocity transformation (w/v), 3) data augmentation with time transformation (w/t), 4) data
augmentation with magnitude transformation (w/m), and 5) data augmentation with the above three methods
(w/a).

he evaluation results are shown in Fig. 14. When no data augmentation strategy (i.e., w/o) is introduced,
the accuracy of one-shot, three-shot, ive-shot, and ten-shot is 74.33%, 76.42%, 80.63%, and 83.61%, respectively.
he experimental results show that using only one data augmentation strategy (i.e., w/v, w/t, and w/m) or all
three data augmentation strategies (i.e., w/a) can signiicantly enhance the performance of our system. he
highest accuracy is achieved when all three data augmentation strategies are used simultaneously because the
augmented source dataset is larger, allowing beter coverage of diferent real-world scenarios and thus improving
the learning ability of the base model.

4.5 Impact of Task Generation Method
We evaluate the efectiveness of the proposed task generation approach described in Sec. 3.5.2. We use random
task generation from the source dataset as the baseline, which has been widely used in recent meta-learning
methods [21, 58]. Speciically, the data in each task is selected randomly from the source data, without consid-
ering the type of forged signature. Ater using the proposed task generation scheme, the veriication accuracy
of one-shot, three-shot, ive-shot, and ten-shot is improved from 71.43%, 76.71%, 78.56%, and 85.98% to 84.07%,
87.31%, 91.12%, and 96.54%, respectively. In comparison to random task generation, dividing the tasks into ran-
dom tasks, skilled tasks, and imitative tasks can beter improve the base model’s ability to verify diferent kinds
of forged signatures.

4.6 Impact of Radar Configuration Parameters
In this subsection, we evaluated the impact of diferent radar coniguration parameters on the experimental
results.

Frame rate.We evaluate the impact of the mmWave radar frame rate. he frame rate of mmWave radar is set
to 5 FPS, 10 FPS, and 20 FPS, respectively. As shown in Fig. 15a, when themmWave radar frame rate changes from
5 FPS to 20 FPS, the veriication accuracy under one-shot, three-shot, ive-shot, and ten-shot setings increases
from 73.35%, 75.45%, 77.24%, and 81.23% to 85.62%, 88.32%, 91.02%, and 96.11%, respectively. Higher frame rates
providemore detailed samples of the signature execution process, but also require more computational resources
for data processing. Since signing is a relatively fast process, 5 FPS is not enough to get the complete dynamic
information, which results in the worst veriication performance. Experimental results show that the diference
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Fig. 15. Impact of radar configuration parameters.

between 20 FPS and 10 FPS in the ten-shot case is less than 0.5%, which is relatively small. herefore, 10 FPS is
suicient to accurately capture the velocity change when signing.

Chirp loops.he impact of mmWave radar velocity resolution on the system is evaluated in this experiment.
he velocity resolution is relected in the number of chirp loops in each radar frame. As shown in Fig.15b, with
the increase of chirp loops from 64 to 128, the accuracy in the one-shot, three-shot, ive-shot, and ten-shot
setings increases from 79.64%, 83.23%, 85.63%, and 88.62% to 82.23%, 85.03%, 87.12%, and 94.31%, respectively.
With the increase of chirp loops from 128 to 255, the accuracy in the above four setings increases from 82.23%,
85.03%, 87.12%, and 94.31% to 84.07%, 87.31%, 91.12%, and 96.54%, respectively. he improvement in accuracy can
be explained as follows. he mmWave radar velocity resolution can be expressed as Δ� = �/(2��� ), where � is
the wavelength,� is the number of chirp loops, and�� is the chirp period. When the chirp period�� is ixed, the
velocity resolution increases as the number of chirp loops increases, which means a beter ability to distinguish
velocity changes during the signature execution process.

4.7 Adaptability to Diferent Signature Types
Since the handwriten signatures of diferent users vary in language and complexity, in this section, we evaluate
the adaptability of our system to diferent types of signatures.

Signature language. To assess the adaptability of our system to diferent language types, we test the adapt-
ability of our system to Chinese signatures based on the base model trained by the source dataset. We recruit
ive additional volunteers and collect their Chinese signature data following the steps in Sec. 4.2. he average
experimental results of the ive volunteers are shown in Fig. 16a.he veriication accuracy of Chinese signatures
in one-shot, three-shot, ive-shot, and ten-shot cases are 80.30%, 83.17%, 86.95%, and 91.68%, respectively, which
is slightly lower than the veriication accuracy of English signatures. he velocity-time feature map responds to
variations in radial velocity during the signing, but not tangential velocity Chinese signatures contain more lat-
eral (tangential) strokes compared to English signatures, which results in less information obtained by mmWave
radar when performing Chinese signatures than English signatures.

Signature complexity. We evaluate the adaptability of our system to signatures of diferent complexity.
Based on the number of leters in the name, we divide all samples into three categories, which are simple (less
than 7 leters), normal (7–11 leters), and complex (more than 11 leters). For each category, we randomly selected
three volunteers whose signatures met the criteria for veriication. he veriication results are shown in Fig. 16b.
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Fig. 16. Adaptability to diferent signature types.

As we can see, when the signature complexity is increased from simple to complex, the veriication accuracy
increases by 1.4%, 2.7%, 3.6%, and 3.2% in the one-shot, three-shot, ive-shot, and ten-shot cases, respectively.he
veriication accuracy of our system is higher in the case of high signature complexity because signatures with
high complexity contain much richer dynamic information.

4.8 Adaptability to Diferent Scenarios
Users may perform signature veriication in diferent scenarios, so in this section, we evaluate the adaptability
of mmSign to diferent real-world scenarios ater new user registration is completed, which include diferent
signature sizes, diferent relative positions of radar and signature box, diferent deployment environments, dif-
ferent signature pens, and diferent signature surfaces. Note that the base model is trained using the source
dataset collected in Sec. 4.2, with the default scenario of size 2, position 0, oice, pen 1, and iPad. We collect data
from the other ive new users in diferent scenarios and ine-tune the base model with the data from the default
scenario. hen, the ine-tuned model is evaluated with data from other scenarios.

Signature size. Diferent signature scenarios may have diferent requirements for the size of the signature,
so we verify the adaptability of mmSign to diferent signature sizes in this experiment. he size of the signature
box is divided into three types: size 1 (2 cm by 1 cm), size 2 (4 cm by 2 cm), and size 3 (8 cm by 4 cm). We use the
signatures of size 2 for new user training, and then use the signatures of size 1 or size 3 for testing. he average
veriication accuracy corresponding to the three diferent sizes of the ive new users is shown in Fig. 18a. Under
size 1 and size 3, the veriication accuracy is not signiicantly diferent from the default size (i.e., size 2), which
demonstrates the robustness of our system to signature size.

Relative positions of radar and signature box. he adaptability of the system to the relative position of
mmWave radar and the signature box is evaluated. As shown in Fig. 17, we move the signature box from its
default position (P0) to the four other positions (P1–P4), and the horizontal and vertical distance between the
centers of two adjacent signature boxes is 15 cm.he signatures used for ine-tuning the base model are collected
at P0, while the signatures used to test the ine-tuned model are collected at the other positions. he average
results of the ive users at diferent positions are shown in Fig. 18b. As we can see, the veriication accuracy at
P3 and P4 remains similar to that at P0, which is due to the fact that the mmWave radar can accurately sense
the radial velocity changes of the hand movements, independent of the radial distance. Despite exhibiting the
poorest performance at P1 and P2, mmSign demonstrates a mean veriication accuracy decrease of less than
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Table 2. Diferent types of pens for signature.

Length (cm) Diameter (cm) Material
Pen 1 17.6 0.9 Plastic
Pen 2 14.0 0.8 Metal
Pen 3 14.0 0.7 Wood
Pen 4 7.0 0.7 Wood

1.5% in comparison to P0. his phenomenon can be atributed to the fact that the mmWave radar is capable of
detecting a signiicantly reduced radial velocity component, despite the signature’s location being positioned
obliquely relative to the radar’s direct line of sight. hus, the radar is still able to capture the radial component
associated with the signature’s velocity. Additionally, as discussed in Sec.3.2.3, our system obtains a feature map
that relects both the velocity variations of the user’s hand and the pen’s upper part, providing richer information
for signature veriication compared to existing acoustic-based solutions. Consequently, mmSign is more robust
to changes in signing position than acoustic-based solutions.

Environments. Since signature veriication may occur in various environments, we conduct experiments in
diferent environments to verify the robustness of mmSign. We chose the oice, cafe, and school hall for this
experiment. here are people walking around during the data collection.he signatures collected in the cafe and
school hall are used to test the ine-tuned model that is trained using data collected in the oice. As shown in
Fig. 18c, the veriication accuracy in the cafe and school hall remains at a similar level compared to the accuracy
in the oice, where signatures from the same environment are used in both the training and testing phases.
his is because our signal processing algorithms ilter out other environmental interference, ensuring that the
obtained time-velocity feature map contains only the information of the user’s signature execution process.

Signature pens. As described in Sec.3.2.3, the obtained time-velocity feature map contains the velocity com-
ponent due to the opposite direction of the end part of the signature pen. In addition, signature pens of diferent
materials may also afect the veriication results due to their diferent relection intensities on the mmWave
radar. To verify the impact of diferent signature pens on our system, we choose four signature pens with var-
ious lengths and materials for our experiments, as shown in Tab. 2. he signatures obtained with Pen 1 are
leveraged to ine-tune the base model, and the ine-tuned model is tested with signatures obtained using the
other pens. Note that all signatures are performed on A4 paper on a wooden desktop, and since Pen 1 is an
electronic pen, the process does not actually produce a signature image. he experimental results are shown in
Fig. 18d, from which we observe that the accuracy of using a longer pen (i.e., Pen 2 and Pen 3) for signature is
slightly higher than that of a shorter pen (i.e., Pen 4), this is because the time-velocity feature map obtained by
using a longer pen contains more information as introduced in Sec. 3.3.1. Meanwhile, the accuracy of using the
metal pen (i.e., Pen 2) for signature is slightly higher than that of using the wooden pen (i.e., Pen 3), due to the
metal pen’s larger RCS.

Signature surfaces.We evaluate the performance of our system on diferent signature surfaces, which simu-
lates the actual situation of signing on diferent materials (e.g., paper, tablet). We choose three diferent surfaces:
an iPad (default), A4 paper on a wooden desktop, and A4 paper on a plastic desktop. We perform three tests
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Fig. 18. Adaptability to diferent scenarios.

using Pen 1, which is an electronic pen and does not produce signature images. We train the model using sig-
natures collected from the iPad and test it with signatures collected on other surfaces. he experimental results
are shown in Fig. 18e. As we can see, the signature surface has a minimal impact on the veriication accuracy
of mmSign, due to the system’s reliance on the hand movements of the signer during the signature execution
process, which is independent of the signature surface.

Random scenarios. In order to assess the adaptability of our system in an entirely unfamiliar scenario charac-
terized by varying signature sizes, relative signature positions, signature pen types, and signature surface types, a
random selection of scenarios is employed for experimental purposes. Speciically, three scenarios are identiied
and designated as follows: Scenario 1 with size 1, P4, cafe, pen 2, and plastic desktop; Scenario 2 with size 3, P1,
hall, pen 4, and wooden desktop; and Scenario 3 with size 1, P3, hall, pen 3, and wooden desktop. he evaluation
results are shown in Fig. 18f. Our evaluation indicates that simultaneous changes to multiple parameters have a
notable impact on the accuracy of signature veriication, in contrast to changes to a single parameter. However,
even in an entirely unfamiliar scenario, the average accuracy of mmSign in one-shot, three-shot, ive-shot, and
ten-shot cases are 79.56%, 82.91%, 87.62%, and 92.21%, respectively. his outcome is commendable, given the
relatively minor time overheads (i.e., less than one and a half minutes for ten signatures) required for new user
registration.

4.9 Security Analysis
In this section, we assess the resistance of mmSign to the three forgery atacks mentioned in Sec. 4.1.2.
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Table 3. System overhead.

Stage
Performance Computation time (s) Energy consumption (mJ)

Static noise elimination 0.563 4.075
Sub-signal Generation 0.821 5.913
RDM generation 2.135 15.623
Time-velocity feature map generation 1.507 11.038
Signature veriication 0.990 7.810
Total 6.016 44.459

We recruit ten volunteers as newly registered legitimate users and ive volunteers as atackers to conduct
forgery atacks. Each legitimate user performs ten signatures as genuine signatures, and the signing process is
recorded on video for the atackers to imitate. For each target user, we randomly select two other users from the
group of nine remaining users and gather three types of forged signatures from them, as described in Sec. 4.2.
herefore, we have ten samples for each type of forged signature. hese signatures are used for base model
ine-tuning. During the evaluation phase, the ive atackers forge three diferent types of signatures for each
legitimate user, with ten instances of each type of forgery. We report the false accept rate (FAR) of mmSign as a
metric to assess the efectiveness of our system in resisting three kinds of forgery atacks.

As shown in Fig. 19, for one-shot, three-shot, ive-shot, and ten-shot cases, the FAR of mmSign are 16.0%,
12.2%, 8.2%, and 2.6% for random forgeries, 16.6%, 12.6%, 9.2%, and 4.7% for skilled forgeries, and 18.6%, 15.8%,
10.8%, and 5.8% for imitative forgeries, respectively.his is because the atackers can only imitate coarse-grained
information such as handmovements and stroke order, but cannot imitate ine-grained information such as hand
size, stroke interval, and signing velocity, which are also relected in the obtained feature map and extracted as
high-level features by the designed veriicationmodel as the basis for veriication. To sum up, mmSign is resilient
to common forgery atacks.

4.10 System Overhead
We train the model oline on the desktop PC and deploy it to the Raspberry Pi 4B to test the system overhead.
We use a power monitor to evaluate the veriication time and the energy consumption required for mmSign to
verify a signature. he computation time and energy consumption of diferent stages are presented in Tab. 3.
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Fig. 20. User study results. 90 subjects are recruited to participate in a user study of mmSign, which has six questions on
ubiquity, security, privacy, eficiency, accuracy, and user-friendliness. For each question, the responses span a scale from 1
(strongly disagree) to 10 (strongly agree).

We can see the static noise elimination time, the sub-signal generation time, the RDM generation time, the time-
velocity feature map generation time, and the veriication time are 0.563 s, 0.821 s, 2.135 s, 1.507 s, and 0.990 s,
respectively. Notably, the generation of RDMs necessitates performing multiple matrix FFT operations on all
IF signals for every radar frame, which is the primary contributor to time overhead. Additionally, since the
veriication model requires image data as input, converting all RDM frames into a single time-velocity feature
map and saving it as an image also incurs a relatively long processing time.he longer processing time is also the
main reason for the larger energy consumption. However, the entire handwriten signature veriication process
is accomplished in approximately 6 s ater receiving the raw data, and the total energy consumption is less than
45mJ, demonstrating the eiciency and speed of mmSign.

5 USER STUDY

5.1 Recruitment and Design
To investigate the usability of mmSign, we further recruit 90 subjects (48 females and 42 males whose ages range
from 15 to 59) to participate in the user study. It should be noted that these individuals are not involved in the
previous studies.hese individuals are not aware of anymethodwe develop to prevent bias. Instead, they are told
to evaluate the usability of mmSign by answering multiple questions. We present the approach of mmSign ater
requesting the consent of each subject to sign a consent form. Each subject then makes three signing atempts.

Following that, each participant evaluates themmSign by responding to six questions that investigate usability
across the following six aspects: ubiquity, security, privacy, eiciency, accuracy, and user-friendliness. he six
questions are listed as follows: (1) I think the application of the veriication method is ubiquitous; (2) I think the
veriication method is secure; (3) I think the veriication method is privacy-preserving; (4) I think the veriication
method is eicient; (5) I think the veriication method is accurate; and (6) I think the veriication method is user-
friendly. he responses range from 1 to 10 on a scale of strongly disagree to strongly agree for each item.
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5.2 User Study Results
Fig. 20 shows the statistical results of this user study. We can observe that mmSign achieves an average satisfac-
tion score of over seven on all questions and close to nine on the three aspects of security, eiciency, and accu-
racy. Speciically, the average scores for ubiquity, security, privacy, eiciency, accuracy, and user-friendliness
are 7.65 ± 2.26, 8.52 ± 1.89, 7.63 ± 2.39, 8.48 ± 1.84, 8.46 ± 1.14, and 7.52 ± 2.29. People’s understanding of
mmWave radar varies due to their difering levels of knowledge about this technology. herefore, some subjects
have questioned the ubiquity and privacy of mmWave radar. In addition, many subjects have not used an au-
tomatic signature veriication system, so even though mmSign only requires a small number of signatures for
registration, some subjects still think it is time-consuming and labor-intensive, leading to poor user-friendliness.
hese indings suggest that there may be some limitations of the mmSign for certain users, particularly those
with less familiarity with mmWave radar or automatic signature veriication systems, which contribute to the
more dispersed scores on questions (1), (3), and (6) in the user study. However, most users express satisfaction
with mmSign in terms of security, accuracy, and eiciency ater experiencing it, resulting in the scores for these
questions being more concentrated. To wrap up, the overall scores of this user study indicate that users believe
mmSign has good usability.

6 LIMITATION AND FUTURE WORK
Eiciency of the meta-learning module. In mmSign, the meta-learning-based new user adaptation module
adopts the MAML [34] as the training algorithm to enable fast-adaptive few-shot learning. However, the MAML
training process requires the calculation of a higher order derivative of the gradient, which can lead to high
computational overhead [52]. In the future, we will use multi-step loss optimization for MAML [4], the implicit
MAML algorithm [52], and task-adaptive MAML [6] to improve the eiciency of base model training for new
user adaptation. In addition, the initial network model trained by using the MAML mechanism may be biased
towards a subset of tasks generated in the meta-training stage and may lack the ability to generalize to new
task domains. To alleviate the above situation, we will use the task-independent meta-learning [34] algorithm
to improve the generalization ability of the model.

Lack of forgery signatures. he implementation of new user registration in mmSign requires only a few
training samples. However, in real-world scenarios, obtaining negative samples in the form of forged signatures
poses a challenge, as the new user may only have access to their genuine signatures. hree types of forgery
signatures exist in the system: random forgery signatures, skilled forgery signatures, and imitative forgery sig-
natures. While we can replace random forgery signatures with genuine signatures of other users, the current
stage restricts us from addressing skilled and imitative forgery signatures, and we rely on other users to perform
imitation. Several approaches have been proposed to address the issue of binary classiication problems that in-
volve only one class of samples. hese approaches include support vector domain description (SVDD) [53], PU
learning [7], and generative adversarial network (GAN)-based methods [2, 29]. Nevertheless, the integration
of these methods with few-shot learning poses a challenge in achieving accurate signature veriication using a
limited number of labeled samples, which will be further explored in our future work.

Robustness of mmSign in the long term. he design principle of mmSign is that when the user signs the
same user name, the behaviors of diferent users are distinct, such that mmSign can distinguish among people
from the collected mmWave sensory data. In mmSign, the speciic-designed signal processing algorithm and
the transformer-based meta-learning model make the handwriten signature veriication resistant to adversarial
atacks. However, a recent study [74] indicates that the behavior of individuals may change slightly over time,
which poses a non-trivial challenge to mmSign. herefore, the core of the solution to this challenge is how to
make mmSign adaptable to the gradual changes in handwriting styles of diferent users while maintaining the
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accuracy of the veriication. In the future, we will use domain adaption methods [44, 76] and lifelong learning
methods [3, 60] to enable the mmSign adaptable to the gradual changes in handwriting styles.

7 CONCLUSION
In this paper, we present a mmWave-based online handwriten signature veriication system, mmSign, by ex-
tracting unique behavioral characteristics of handwriting signatures using commercial mmWave radar. Partic-
ularly, mmSign designs a series of novel signal processing algorithms to eliminate various noises and extract
features from the raw signals during the signature extraction process. In addition, a meta-learning mechanism
is introduced in mmSign to improve the adaptation performance of the transformer-based veriication model for
new users. Extensive evaluations in diferent real-world environments using various signing pens and surfaces
demonstrate that mmSign achieves an average veriication accuracy of 84.07%, 87.31%, 91.12%, and 96.54% in
the one-shot, three-shot, ive-shot, and ten-shot setings, respectively, while also efectively resisting common
forgery atacks. To the best of our knowledge, mmSign is the irst work to utilize mmWave signals for online
handwriten signature veriication, ofering a new approach to the development of secure and reliable signature
veriication.
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